ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

дисциплины ОП.05 «Электротехника и электроника»

Специальность 21.02.01 Разработка нефтяных и газовых месторождений

> Квалификация техник-технолог

> Форма обучения очная

Бузулук 2024

Содержание

- 1 Паспорт фонда оценочных средств
 - 1.1 Область применения
 - 1.2 Результаты освоения дисциплины, подлежащие контролю
 - 1.3 Система контроля и оценки освоения программы дисциплины
- 2 Фонд оценочных средств для оценки уровня освоения умений и знаний по дисциплине
 - 2.1Материалы текущего контроля успеваемости
 - 2.2 Комплект материалов для промежуточной аттестации

1 Паспорт фонда оценочных средств

1.1 Область применения

Фонд оценочных средств предназначен для проверки результатов освоения дисциплины ОП.05 «Электротехника и электроника» программы подготовки специалистов среднего звена по специальности 21.02.01 Разработка нефтяных и газовых месторождений.

ФОС включает контрольные материалы для проведения текущего контроля успеваемости, промежуточной аттестации в форме дифференцированного зачета и экзамена. Итогом промежуточной аттестации является оценка в баллах:

- 5 отлично;
- 4 -хорошо;
- 3 удовлетворительно;
- 2 неудовлетворительно.

ФОС позволяет оценивать уровень освоения знаний и умений по дисциплине.

1.2 Результаты освоения дисциплины, подлежащие контролю

В результате контроля и оценки по дисциплине осуществляется комплексная проверка следующих знаний и умений по показателям:

Таблица

Таолица		
Результаты обучения	Показатели оценки результата	Формируемые общие и профессиональные компетенции
У1- подбирать устройства электронной	-грамотно подбирать устройства электронной	ОК 01, ОК 02, ОК 04, ПК 1.1 - 1.5
техники, электрические	техники, электрические	ПК 1.1 - 1.3
приборы и	приборы и	
оборудование с	оборудование с	
определенными	определенными	
параметрами и характеристиками	параметрами и характеристиками	
У2- правильно	- грамотно и правильно	OK 01, OK 02, OK 04,
эксплуатировать	эксплуатировать	ПК 1.1 - 1.5
электрооборудование и	электрооборудование и	ПК 2.1 – 2.2
механизмы передачи	механизмы передачи	
движения	движения	
технологических машин	технологических машин	
и аппаратов	и аппаратов	
У3- рассчитывать	- грамотно рассчитывать	OK 01, OK 02, OK 04,
параметры	параметры	ПК 1.1 - 1.5

электрических,	электрических,	ПК 2.1-2.2
магнитных цепей	магнитных цепей	ПК 3.1-3.3
У4- снимать показания	- грамотно снимать	OK 01, OK 02, OK 04,
и пользоваться	показания и	ПК 1.1 - 1.5
электроизмерительными	пользоваться	ПК 2.2
приборами и	электроизмерительными	ПК 3.3 -3.3
приспособлениями	приборами и	ПК 4.4
приспосоолениями	приспособлениями	ПК 5.1-5.2
У5- собирать	-грамотно собирать	OK 01, OK 02, OK 04,
электрические схемы	электрические схемы	ПК 1.1 - 1.5
электри теские ехемы	электри теские ехемы	ПК 2.1-2.2
		ПК 3.2
У6- читать	- грамотно читать	OK 01, OK 02, OK 04,
принципиальные,	принципиальные,	ПК 1.1 - 1.3
электрические и	электрические и	ПК 2.2
монтажные схемы	монтажные схемы	ПК 3.1-3.3
31- классификацию	- объяснять	OK 01, OK 02, OK 04,
электронных приборов,	классификацию	ПК 1.1 - 1.5
их устройство и область	электронных приборов,	ПК 2.1-2.2
применения	их устройство и область	ПК 3.1-3.3
применения	применения	ПК 4.4
32- методы расчета и	- объяснять методы	OK 01, OK 02, OK 04,
измерения основных	расчета и измерения	ПК 1.1 - 1.5
параметров	основных параметров	ПК 2.1-2.2
электрических,	электрических,	ПК 3.1-3.3
магнитных цепей	магнитных цепей	ПК 4.1-4.4, ПК 5.1
33- основные законы	- верное объяснение	OK 01, OK 02, OK 04,
электротехники	основных законов	ПК 1.1 - 1.5
	электротехники	ПК 2.2
34- основные правила	- верное объяснение	OK 01, OK 02, OK 04,
эксплуатации	основных правил	ПК 1.1 - 1.5
электрооборудования и	эксплуатации	ПК 2.1-2.2
методы измерения	электрооборудования и	ПК 3.1-3.3
электрических величин	методов измерения	ПК 4.1-4.4
	электрических величин	ПК 5.1-5.2
35- основы теории	- верное объяснение	OK 01, OK 02, OK 04,
электрических машин,	основы теории	ПК 1.1 - 1.5
принцип работы	электрических машин,	ПК 2.1-2.2
типовых электрических	принцип работы	ПК 3.1-3.3
устройств	типовых электрических	ПК 4.1-4.4
	устройств	ПК 5.1-5.2
36- основы физических	- верное объяснение	OK 01, OK 02, OK 04,
процессов в	основы физических	ПК 1.1 - 1.5
•	процессов в	ПК 2.1-2.2
проводниках,	процессов в	11K 2.1-2.2

	Т	T
полупроводниках и	проводниках,	ПК 3.1-3.3
диэлектриках	полупроводниках и	ПК 4.1-4.4
	диэлектриках	ПК 5.1-5.2
37- параметры	37- параметры - верное объяснение	
электрических схем и	параметров	ПК 1.1 - 1.5
единицы их измерения	электрических схем и	ПК 2.1-2.2
	единицы их измерения	ПК 3.1-3.3
	_	
38- принципы работы	- верное объяснение	OK 01, OK 02, OK 04,
электрических и	принципов работы	ПК 1.1 - 1.5
электронных устройств	электрических и	ПК 2.1-2.2
и приборов	электронных устройств	ПК 3.1-3.3
	и приборов	
39- принципы действия,	- верное объяснение	OK 01, OK 02, OK 04,
устройство, основные	принципов действия,	ПК 1.1 - 1.5
характеристики	устройство, основные	ПК 2.1-2.2
электротехнических и	характеристики	ПК 3.1-3.3
электронных устройств	электротехнических и	ПК 4.1-4.4
и приборов	электронных устройств	ПК 5.1-5.2
	и приборов	
310- свойства	- верное объяснение	OK 01, OK 02, OK 04,
проводников,	свойств проводников,	ПК 1.1 - 1.5
полупроводников,	полупроводников,	ПК 2.1-2.2
электроизоляционных,	электроизоляционных,	ПК 3.1-3.3
магнитных материалов	магнитных материалов	ПК 4.1-4.4
311-способы получения,	- верное объяснение	OK 01, OK 02, OK 04,
передачи и	способов получения,	ПК 1.1 - 1.5
использования	передачи и	ПК 2.1-2.2
электрической энергии	использования	ПК 3.1-3.3
	электрической энергии	ПК 4.1-4.4
312- характеристики и	- верное объяснение	ОК 01, ОК 02, ОК 04,
параметры	характеристик и	ПК 1.1 - 1.5
электрических и	параметров	ПК 2.1-2.2
магнитных полей	электрических и	ПК 3.1-3.3
	магнитных полей	ПК 4.1-4.4
		<u> </u>

1.3 Система контроля и оценки освоения программы дисциплины

Основными формами проведения текущего контроля знаний на занятиях являются: входной контроль, устный опрос, тестирование, выполнение лабораторных и практических работ, рефератов и презентаций; промежуточной аттестации — экзамен и дифференцированный зачет.

Оценка освоения дисциплины ОП.05 «Электротехника и электроника» предусматривает систему оценивания: положительные результаты выполнения лабораторных и практических работ, рефератов и презентаций, тестирования, а также результаты проведения промежуточной аттестации по дисциплине.

Дифференцированный зачет проводится в сроки, установленные учебным планом, и определяемые календарным учебным графиком образовательного процесса, в форме собеседования.

2. Фонд оценочных средств для оценки уровня освоения умений и знаний по дисциплине

2.1 Материалы текущего контроля успеваемости

Материал входного контроля в виде тестов состоит из 7 вопросов и 2–х вариантов. Каждый вопрос предполагает один правильный ответ. Максимальное время выполнения - 15 минут.

Итогом проведения входного контроля является оценка в баллах:

- 5 «отлично»- все задания выполнены, верно;
- 4 «хорошо»- выполнено пять заданий, верно;
- 3 «удовлетворительно» выполнена четыре задания;
- 2 «неудовлетворительно» выполнено менее трех заданий.

Проверяемые знания 31,32,33,34,35,36,37,38,39,310,311,312.

- 1. Что такое сопротивление проводника?
- а) отношение силы тока в проводнике к напряжению;
- б) способность проводника препятствовать движению электронов?
- в) разность между ЭДС и напряжением;
- г) способность проводника проводить ток.
- 2. Укажите верное выражение для расчета сопротивления проводника.
- a) $R = \rho l/S$;
- 6) $R = \rho/lS$;
- B) $R = \rho S/l$;
- Γ) $R = \rho l S$.
- 3. Что такое сила электрического тока?
- а) отношение сопротивления к напряжению;
- б) число электронов, прошедших через поперечное сечение проводника в единицу времени;
 - в) мощность на зажимах источника питания;

- г) сумма электронов в проводнике.
- 4. Что такое мощность электрического тока?
- а) скорость преобразования электрической энергии в другие виды энергии;
 - б) отношение электрической энергии к сопротивлению проводника;
 - в) величина, обратно пропорциональная электрической энергии;
 - г) работа по перемещению зарядов.
 - 5. Может ли сопротивление проводника быть равным нулю?
 - а) может при сверхвысоких температурах;
 - б) может при сверхвысоких напряжениях;
 - в) может при сверхнизких температурах;
 - г) не может никогда.
- 6. Поясните с физической точки зрения, почему с увеличением температуры сопротивление проводника растет?
 - а) уменьшается расстояние между атомами;
 - б) растет число атомов;
 - в) растет число свободных электронов;
 - г) растут частота и амплитуда колебаний атомов.
 - 7. Что такое напряжение?
 - а) отношение силы тока к сопротивлению;
 - б) потенциал в любой точке поля;
 - в) работа по перемещению единичного заряда из одной точки в другую;
 - г) алгебраическая сумма ЭДС.

- 1. Что такое ток в проводниках первого рода?
- а) упорядоченное движение ионов;
- б) направленное движение протонов;
- в) направленное движение электронов;
- г) упорядоченное движение атомов.
- 2. Каков знак заряда у электрона, атома, протона, нейтрона?
- а) соответственно нейтральный, отрицательный, положительный, нейтральный;
 - б) отрицательный, нейтральный, положительный, нейтральный;
 - в) нейтральный, отрицательный, положительный, нейтральный;
 - г) отрицательный, положительный, нейтральный, нейтральный.
- 3. Почему в создании электрического тока в проводниках участвуют именно электроны?
 - а) они имеют отрицательный заряд;
 - б) они могут покидать свои орбиты и становиться свободными;
 - в) они легче протонов;
 - г) их больше чем протонов.
- 4. Что необходимо сделать, чтобы заставить электроны двигаться в проводнике направленно?
 - а) пропустить через проводник ток;

- б) поместить проводник в магнитное поле;
- в) приложить к проводнику напряжение;
- г) уменьшить сопротивление проводника.
- 5. От чего зависит сопротивление проводника?
- а) от длины, площади поперечного сечения и диаметра проводника;
- б) приложенного напряжения;
- в) скорости дрейфа электронов;
- г) материала проводника, его длины и площади поперечного сечения.
- 6. Что такое ЭДС источника питания?
- а) сумма всех напряжений в электрической цепи;
- б) напряжение на зажимах источника в режиме холостого хода;
- в) напряжение между корпусом электроустановки и землей;
- г) ни один ответ не верен.
- 7. Что такое проводимость проводника?
- а) способность проводника проводить электрический ток;
- б) разность между напряжением и ЭДС;
- в) взаимодействие между электронами и протонами;
- г) отношение напряжения к силе тока в проводнике.

Ответы

Darmanz	Варианты		
Вопросы	1	2	
1	б	В	
2	a	б	
3	б	б	
4	a	В	
5	В	Γ	
6	Γ	б	
7	В	a	

Материал тестирования состоит из 5 вопросов и 4–х вариантов. Каждый вопрос предполагает один правильный ответ.

Максимальное время выполнения - 15 минут. Итогом проведения входного контроля является оценка в баллах:

- 5 «отлично»- все задания выполнены, верно;
- 4 «хорошо» выполнено четыре задания, верно;
- 3 «удовлетворительно» выполнена три задания;
- 2 «неудовлетворительно» выполнено менее трех заданий.

С	вариант одержание	1	В	арианты от	гветов	
вопроса		1	2	3	4	5
1	Физический смысл первого закона Кирхгофа	определяет связь между основными электрическими величинами на участках цепи	сумма ЭДС источников питания в любом контуре равна сумме падений напряжения на элементах этого контура	закон баланса токов в узле: сумма токов, сходящихся в узле равна нулю	энергия, выделяемая на сопротивлении при протекании по нему тока, пропорциональна произведению квадрата силы тока и величины сопротивления	мощность, развиваемая источниками электроэнергии, должна быть равна мощности преобразования в цепи электроэнергии в другие виды энергии
2	Собственное (контурное) сопротивлени е — это	сумма сопротивлений в каждом из смежных контуров	сумма сопротивлений в каждом независимом контуре	сумма ЭДС в каждом независимом контуре	сумма ЭДС в каждом из смежных контуров	сумма токов, которые протекают в каждом независимом контуре
3	Ветвь электрическо й цепи — это	совокупность устройств, предназначенны х для получения электрического тока	разность напряжений в начале и в конце линии	ее участок, расположенн ый между двумя ее участок, расположенн ый между двумя	точка электрической цепи, в которой соединяется три и более проводов	замкнутый путь, проходящий по нескольким ветвям
4	Количество уравнений, записываемых по методу контурных токов определяется	числом источников питания в данной схеме	числом ветвей в данной схеме	числом контуров в данной схеме	числом узлов в данной схеме	числом независимых контуров в данной схеме
5	Достоинство метода контурных токов заключается в том, что	позволяет сократить число уравнений, получаемых по законам Кирхгофа	число независимых узлов меньше числа контуров	позволяет найти токи в ветвях без составления и решения системы уравнений	система уравнений составляется только по второму закону Кирхгофа	в каждом независимом контуре протекает свой ток, который создает падение напряжения на тех сопротивлениях цепи, по которым он протекает

	Бариант 2					
C	одержание	Варианты ответов				
	вопроса	1	2	3	4	5
1	Физический смысл второго закона Кирхгофа	определяет связь между основными электрическими величинами на участках цепи	сумма ЭДС источников питания в любом контуре равна сумме падений напряжения на элементах этого контур	закон баланса токов в узле: сумма токов, сходящихся в узле равна нулю	энергия, выделяемая на сопротивлении при протекании по нему тока, пропорциональна произведению квадрата силы тока и величины сопротивления	мощность, развиваемая источниками электроэнергии, должна быть равна мощности преобразования в цепи электроэнергии в другие виды энергии
2	Взаимное сопротивлени е — это	сумма сопротивлений в каждом из	сумма сопротивлений в каждом	сумма ЭДС в каждом независимом	сумма ЭДС в каждом из смежных контуров	сумма токов, которые протекают в

		смежных контуров	независимом контуре	контуре		каждом независимом контуре
3	Количество уравнений, записываемых по методу контурных токов определяется	числом источников питания в данной схем	числом ветвей в данной схеме	числом контуров в данной схеме	числом узлов в данной схеме	числом независимых контуров в данной схеме
4	Достоинство метода контурных токов заключается в том, что	позволяет сократить число уравнений, получаемых по законам Кирхгофа	число независимых узлов меньше числа контуров	позволяет найти токи в ветвях без составления и решения системы уравнений	система уравнений составляется только по второму закону Кирхгофа	в каждом независимом контуре протекает свой ток, который создает падение напряжения на тех сопротивлениях цепи, по которым он протекает
5	Электрическа я цепь — это	совокупность устройств, предназначенны х для получения электрического тока	разность напряжений в начале и в конце линии	ее участок, расположенн ый между двумя узлами	точка электрической цепи, в которой соединяется три и более проводов	замкнутый путь, проходящий по нескольким ветвям

C	одержание	Варианты ответов				
	вопроса	1	2	3	4 5	
1	Отличительн ые признаки простых цепей	наличие только одного источника энергии	наличие нескольких замкнутых контуров	произвольное размещение источников питания	соединение элементов цепи выполнено по правилам последовательного и параллельного соединений	возможность до расчетов указать истинные направления токов в ветвях
2	Физический смысл закона Ома	определяет связь между основными электрическими величинами на участках цепи	сумма ЭДС источников питания в любом контуре равна сумме падений напряжения на элементах этого контура	закон баланса токов в узле: сумма токов, сходящихся в узле равна нулю	энергия, выделяемая на сопротивлении при протекании по нему тока, пропорциональна произведению квадрата силы тока и величины сопротивления	мощность, развиваемая источниками электроэнергии, должна быть равна мощности преобразования в цепи электроэнергии в другие виды энергии
3	Контурная ЭДС — это	сумма сопротивлений в каждом из смежных контуров	сумма сопротивлений в каждом независимом контуре	сумма ЭДС в каждом независимом контуре	сумма ЭДС в каждом из смежных контуров	сумма токов, которые протекают в каждом независимом контуре
4	Потеря напряжения — это	совокупность устройств, предназначенны х для получения электрического тока	разность напряжений в начале и в конце линии	ее участок, расположенн ый между двумя узлами	точка электрической цепи, в которой соединяется три и более проводов	замкнутый путь, проходящий по нескольким ветвям
5	Количество уравнений, записываемых по методу контурных токов определяется	числом источников питания в данной схеме	числом ветвей в данной схеме	числом контуров в данной схеме	числом узлов в данной схеме	числом независимых контуров в данной схеме

С	одержание	не Варианты ответов				
	вопроса	1	2	3	4	5
1	Сущность метода свертки схемы заключается в том, что он	основан на применении законов Кирхгофа	основан на эквивалентной замене элементов преобразованно го участка	основан на возможности эквивалентных преобразован ий	основан на составлении системы уравнений	основан на применении закона Ома
2	Физический смысл баланса мощностей	определяет связь между основными электрическими величинами на участках цепи	сумма ЭДС источников питания в любом контуре равна сумме падений напряжения на элементах этого контура	закон баланса токов в узле: сумма токов, сходящихся в узле равна нулю	энергия, выделяемая на сопротивлении при протекании по нему тока, пропорциональна произведению квадрата силы тока и величины сопротивления	мощность, развиваемая источниками электроэнергии, должна быть равна мощности преобразования в цепи электроэнергии в другие виды энергии
3	Контурный ток — это	сумма сопротивлений в каждом из смежных контуров	сумма сопротивлений в каждом независимом контуре	сумма ЭДС в каждом независимом контуре	сумма ЭДС в каждом из смежных контуров	сумма токов, которые протекают в каждом независимом контуре
4	Узел (точка) разветвления — это	совокупность устройств, предназначенны х для получения электрического тока	разность напряжений в начале и в конце линии	ее участок, расположенн ый между двумя узлами	точка электрической цепи, в которой соединяется три и более проводов	замкнутый путь, проходящий по нескольким ветвям
5	Взаимное сопротивлени е — это	сумма сопротивлений в каждом из смежных контуров	сумма сопротивлений в каждом независимом контуре	сумма ЭДС в каждом независимом контуре	сумма ЭДС в каждом из смежных контуров	сумма токов, которые протекают в каждом независимом контуре

Ответы:

B-1: 1-2; 2-1; 3-2; 4-1; 5-3.

B-2: 1-3; 2-2; 3-2; 4-3; 5-3.

B-3: 1-2; 2-1; 3-2; 4-1; 5-3.

B-4: 1-3; 2-2; 3-2; 4-3; 5-3.

Материал для выполнения лабораторных и практических работ изложен в методическом пособии «Методические указаниям по выполнению лабораторных работ». Методическое пособие разработано на проведение 8 практических работ. Материал состоит из задания, кратких теоретических сведений, порядка выполнения и контрольных вопросов по каждой работе.

Время подготовки отчетов по лабораторным и практическим занятиям указано в графике внеаудиторной самостоятельной работы студента по дисциплине.

Итогом выполнения лабораторных и практических занятий является оценка в баллах: 5 «отлично», 4 «хорошо», 3 «удовлетворительно», 2 «неудовлетворительно».

Критерии оценок и проверяемые знания и умения, требования к оформлению отчета указаны в методических указаниях.

Пример

Практическая работа 1

Тема: «Изучение закона Ома для участка цепи»

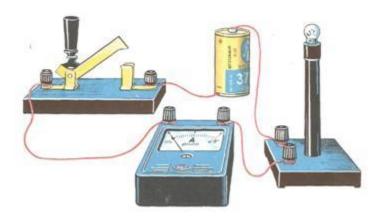
Цель работы: установить на опыте зависимость силы тока от напряжения и сопротивления.

Оборудование: амперметр лабораторный, вольтметр лабораторный, источник питания, набор из трёх резисторов сопротивлениями 1 Ом, 2 Ом, 4 Ом, реостат, ключ замыкания тока, соединительные провода.

Ход работы.

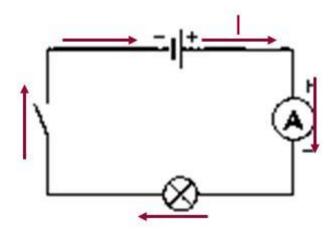
Краткие теоретические сведения

Электрический ток - упорядоченное движение заряженных частиц


Количественной мерой электрического тока служит *сила тока* I

Сила тока - - скалярная физическая величина, равная отношению заряда д, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

$$I = \frac{q}{t}$$


В Международной системе единиц СИ сила тока измеряется в амперах [А]. $[1A=1K\pi/1c]$

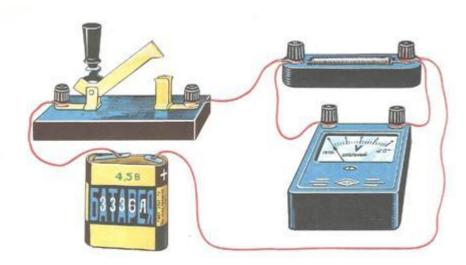
Прибор для измерения силы тока Амперметр. Включается в цепь последовательно

На схемах электрических цепей амперметр обозначается (А).

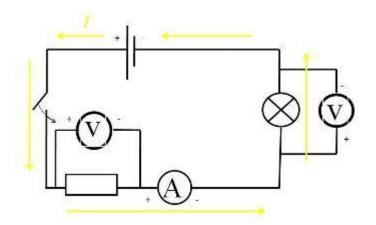
Напряжение — это физическая величина, характеризующая действие электрического поля на заряженные частицы, численно равно работе электрического поля по перемещению заряда из точки с потенциалом φ_1 в точку с потенциалом φ_2

$$U = \frac{2}{4}$$

$$U_{12} = \varphi_1 - \varphi_2$$


U – напряжение

А – работа тока


 \mathbf{q} – электрический заряд

Единица напряжения – Вольт [В]

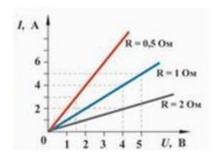
Прибор для измерения напряжения — **Вольтметр.** Подключается в цепь параллельно тому участку цепи, на котором измеряется разность потенциалов.

На схемах электрических цепей амперметр обозначается .

Величина, характеризующая противодействие электрическому току в проводнике, которое обусловлено внутренним строением проводника и хаотическим движением его частиц, называется электрическим сопротивлением проводника.

Электрическое сопротивление проводника зависит от размеров и формы проводника и от материала, из которого изготовлен проводник.

$$R = \rho \frac{l}{S}$$

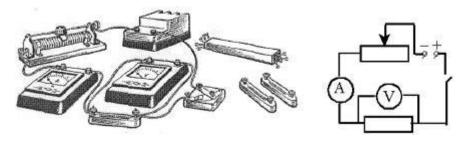

S- площадь поперечного сечения проводника

l — длина проводника

 ρ – удельное сопротивление проводника

В СИ единицей электрического сопротивления проводников служит ом [Ом].

Графическая зависимость силы тока I от напряжения U - вольтамперная характеристика


Закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

$$I = \frac{U}{R}$$

Назван в честь его первооткрывателя Георга Ома.

Практическая часть

1. Для выполнения работы соберите электрическую цепь из источника тока, амперметра, реостата, проволочного резистора сопротивлением 2 Ом и ключа. Параллельно проволочному резистору присоедините вольтметр (см. схему).

2. Опыт 1. Исследование зависимости силы тока от напряжения на данном участке цепи. Включите ток. При помощи реостата доведите напряжение на зажимах проволочного резистора до 1 В, затем до 2 В и до 3 В. Каждый раз при этом измеряйте силу тока и результаты записывайте в табл. 1.

Таблица 1. Сопротивление участка 2 Ом

Напряжение, В		
Сила тока, А		

- **3.** <u>По данным опытов постройте график зависимости силы тока от напряжения.</u> Сделайте вывод.
- **4. Опыт 2**. Исследование зависимости силы тока от сопротивления участка цепи при постоянном напряжении на его концах. Включите в цепь по той же схеме проволочный резистор сначала сопротивлением 1 Ом, затем 2 Ом и 4 Ом. При помощи реостата устанавливайте на концах участка каждый раз одно и то же напряжение, например, 2 В. Измеряйте при этом силу тока, результаты записывайте в табл 2.

Таблица 2. Постоянное напряжение на участке 2 В

Сопротивление участка, Ом		
Сила тока, А		

- **5.** По данным опытов постройте график зависимости силы тока от сопротивления. Сделайте вывод.
 - 6. Ответьте на контрольные вопросы.

Контрольные вопросы

- 1. Что такое электрический ток?
- 2. Дайте определение силы тока. Как обозначается? По какой формуле находится?

- 3. Какова единица измерения силы тока?
- 4. Каким прибором измеряется сила тока? Как он включается в электрическую цепь?
- 5. Дайте определение напряжения. Как обозначается? По какой формуле находится?
- 6. Какова единица измерения напряжения?
- 7. Каким прибором измеряется напряжение? Как он включается в электрическую цепь?
- 8. Дайте определение сопротивления. Как обозначается? По какой формуле нахолится?
- 9. Какова единица измерения сопротивления?
- 10. Сформулируйте закон Ома для участка цепи.

Вариант выполнения измерений.

Опыт 1. Исследование зависимости силы тока от напряжения на данном участке цепи. Включите ток. При помощи реостата доведите напряжение на зажимах проволочного резистора до 1 В, затем до 2 В и до 3 В. Каждый раз при этом измеряйте силу тока и результаты записывайте в табл. 1.

Таблица 1. Сопротивление участка 2 Ом

Напряжение, В	1	2	3
Сила тока, А	0,5	1,0	1,5

<u>По данным опытов постройте график зависимости силы тока от напряжения.</u> Сделайте вывод.

Опыт 2. Исследование зависимости силы тока от сопротивления участка цепи при постоянном напряжении на его концах. Включите в цепь по той же схеме проволочный резистор сначала сопротивлением 1 Ом, затем 2 Ом и 4 Ом. При помощи реостата устанавливайте на концах участка каждый раз одно и то же напряжение, например, 2 В. Измеряйте при этом силу тока, результаты записывайте в табл 2.

Таблица 2. Постоянное напряжение на участке 2 В

Сопротивление участка, Ом	1	2	4
Сила тока, А	2,0	1,0	0,5

По данным опытов постройте график зависимости силы тока от сопротивления. Сделайте вывод.

2.2 Комплект материалов для промежуточной аттестации

ВОПРОСЫ

к дифференцированному зачету по дисциплине «ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА»

Раздел 2. Методы расчета линейных цепей постоянного и переменного тока

- 1. Понятие электрической цепи.
- 2. Активные элементы электрической цепи.
- 3. Пассивные элементы электрической цепи.
- 4. Топологический анализ электрической цепи.
- 5. Понятие ветви, узла, контура.
- 6. Последовательное и параллельное соединение пассивных элементов.
- 7. Закон Ома для участка цепи.
- 8. Закон Ома для замкнутой цепи.
- 9. Задачи расчета электрических цепей.
- 10. Первый закон Кирхгофа для цепей постоянного тока.
- 11. Второй закон Кирхгофа для цепей постоянного тока.
- 12. Расчет электрических цепей постоянного тока с помощью законов Кирхгофа.
- 13. Расчет электрических цепей постоянного тока методом контурных токов.
 - 14. Расчет электрических цепей постоянного тока методом наложения.
 - 15. Применение матриц к расчету электрических цепей постоянного тока.
 - 16. Синусоидальный ток, его параметры.
 - 17. Способы изображения синусоидальных величин.
 - 18. Цепь синусоидального тока с активным элементом.
 - 19. Цепь синусоидального тока с индуктивным элементом.
 - 20. Цепь синусоидального тока с емкостным элементом.
- 21. Расчет синусоидальных цепей при последовательном соединении RLC-элементов.
 - 22. Резонанс напряжений.
- 23. Расчет синусоидальных цепей при смешанном соединении RLC-элементов.
 - 24. Мощность цепи переменного тока.
 - 25. Система трехфазного тока.
 - 26. Соединение обмоток трехфазного генератора.

Раздел 3. Электрические цепи с нелинейными элементами, магнитные цепи

- 1. Понятие нелинейных элементов.
- 2. Графические методы расчета нелинейных цепей.
- 3. Ферромагнитные материалы; их свойства и характеристики.
- 4. Расчет магнитных цепей постоянного тока.

Раздел 4. Электромагнитные устройства и электрические машины

- 1. Назначение трансформатора.
- 2. Устройство трансформатора.
- 3. Принцип действия трансформатора.
- 4. ЭДС обмоток трансформатора.
- 5. Трансформатор под нагрузкой.
- 6. Уравнения первичной, вторичной и магнитной цепей.
- 7. Внешняя характеристика трансформатора.
- 8. Понятие о трехфазном трансформаторе.
- 9. Параллельная работа трансформаторов.
- 10. Назначение машин постоянного тока.
- 11. Устройство машины постоянного тока.
- 12. Принцип действия двигателя постоянного тока.
- 13. Основные уравнения двигателя постоянного тока.
- 14. Электромагнитный момент двигателя постоянного тока.
- 15. Классификация двигателей по способу возбуждения.
- 16. Двигатель независимого возбуждения.
- 17. Двигатель параллельного возбуждения.
- 18. Двигатель последовательного возбуждения.
- 19. Двигатель смешанного возбуждения.
- 20. Применение двигателей постоянного тока в составе технологического оборудования.
 - 21. Назначение асинхронного двигателя.
 - 22. Устройство асинхронного двигателя.
 - 23. Принцип действия асинхронного двигателя.
 - 24. Электромагнитный момент асинхронного двигателя.
 - 25. Механическая характеристика асинхронного двигателя.
 - 26. Анализ механической характеристики асинхронного двигателя.
 - 27. Характерные показатели механической характеристики.
 - 28. Понятие о модификациях асинхронных двигателей.
 - 29. Асинхронный двигатель основного исполнения,.
 - 30. Асинхронный двигатель с повышенным скольжением.
 - 31. Асинхронный двигатель с повышенным пусковым моментом.
 - 32. Асинхронный двигатель с фазным ротором,
 - 33. Многоскоростные асинхронные двигатели.
 - 34. Регулирование частоты вращения асинхронных двигателей.
 - 35. Применение двигателей в составе технологического оборудования.

Раздел 5. Основы электроники

- 1. Элементная база современных электронных устройств.
- 2. Полупроводниковые диоды.
- 3. Полупроводниковые транзисторы.
- 4. Тиристоры.
- 5. Однополупериодный выпрямитель.
- 6. Двухполупериодный выпрямитель.
- 7. Основные параметры выпрямителй.

- 8. Тиристорный преобразователь, как источник регулируемого напряжения.
 - 9. Классификация усилителей электрических сигналов.
 - 10. Основные характеристики усилителей электрических сигналов.
 - 11. Анализ работы однокаскадного усилителя на транзисторе.
 - 12. Генераторы сигналов: типы и параметры.
 - 13. Принципы построения генераторов.

Раздел 6. Основы цифровой электроники

- 1. Элементы импульсной техники.
- 2. Логический элемент И.
- 3. Логический элемент ИЛИ.
- 4. Логический элемент НЕ: схемы, логика работы.
- 5. Схемы управления электроприводами на логических элементах

Практические задачи

- 1.Определить длину проводника диаметром d=0,5мм для нагревательного элемента при включении его в сеть с напряжением U=220B при токе потребления I=6,5 А,выполненного из: 1) нихрома, 2)константана, 3) стали, 4) фехраля, 5) алюминия, 6)манганина. Определить плотность тока.
- 2.Общая емкость трех последовательно соединенных конденсаторов C=0.08 мкФ. Определить емкость одного из конденсаторов, если емкости C1=0.2 мкФ, C2=0.4 мкФ. Определить их эквивалентную емкость при параллельном соединении конденсаторов.
- 3.Электропечь, работающая при напряжении U=220B, потребляет мощность P=3 кВт. Определить сопротивление и ток в обмотке, количество теплоты и стоимость электроэнергии, если печь работала в течение 8 ч. Стоимость 1 кВт/ч электроэнергии 4 рубля.
- 4.К источнику постоянного тока с ЭДС E=125В подключены последовательно три резистора сопротивлениями R1=100 Ом,R2=30 Ом,R3=120 Ом. Определить ток в цепи, падение напряжения и мощность в каждом резисторе. Внутренним сопротивлением пренебречь.
- 5.Прямолинейный проводник длиной l=0,3 м, по которому проходит ток I=12 А,помещен в однородное магнитное поле с магнитной индукцией B=0,5 Тл. Определить силу, действующую на проводник, если он расположен: а)перпендикулярно линиям поля; б)вдоль линий поля.
- 6.Энергия магнитного поля цилиндрической катушкиW=3,8 Дж. Определить индуктивность катушки и магнитную проницаемость

сердечника, если I=6 А,число витков катушки w=150,длина её l=40 мм, площадь сечения S=1 см².

- 7.По резистору сопротивлением R=20 Ом проходит ток i=0,75 sinwtA. Определить мощность, амплитудное и действующее значения падения напряжения на резисторе, записать выражение мгновенного значения этого напряжения и построить векторную диаграмму токов и напряжений для t=0.
- 8.К источнику переменного тока с частотой f=25 Гц подключена индуктивная катушка. Действующее значение тока через катушку I=7 A активная мощность Р=166,6 Вт, падение напряжения на индуктивном U=54 B. сопротивлении катушки Определить полное активное сопротивление катушки, eë индуктивность, действующее значение приложенного напряжения, построить треугольник мощностей и векторную диаграмму.
- 9.Полное сопротивление катушки Z=8 Ом, её индуктивность L=300 мкГн. Действующее значение падения напряжения на ней составляет 4,8 В при частоте f=2500 Гц. Определить угол сдвига фаз между напряжением и током, построить векторную диаграмму и определить полную, активную и реактивную мощности.
- 10.Действующее значение переменного тока с частотой f=450 Гц, проходящего по катушке, I=1.2 А. Активное сопротивление катушки R=20 Ом. Определить индуктивность катушки, полную, активную, реактивную мощности, если падение напряжения на индуктивном сопротивлении катушки в пять раз больше напряжения на её активном сопротивлении. Построить векторную диаграмму и треугольник мощностей.
- 11. Конденсатор и последовательно включенный с ним резистор подключены к источнику переменного тока с частотой f=250 Гц. Действующие значения тока и напряжения равны соответственно 800 мА и 36 В. Реактивная мощность цепи 18,5 вар. Определить сопротивление резистора, емкость конденсатора, полную и активную мощности цепи.
- 12. Нагрузка, соединенная по схеме «звезда», потребляет от источника трехфазной сети с действующим значением линейного напряжения U=120 В активную мощность P=800 Вт при коэффициенте мощности соѕф=0.8. Определить, как изменяется линейные и фазные токи и потребляемая активная мощность при соединении той же нагрузки по схеме треугольник.
- 13.Потребляемая активная мощность приемника энергии, соединенного по схеме «треугольник», P=3 кВт. В каждую фазу включены последовательно резистор сопротивлением R=30 Ом и катушка с индуктивностью L=0.24 Гн. Определить действующие значения тока и напряжения в фазе, линейного тока и полную потребляемую мощность. Частота сети f=50 Гц.

- 14.Три одинаковые катушки индуктивности, соединенные по схеме «треугольник»,подключены к трехфазной сети с действующим напряжением U=127 В при частоте f=50 Гц и потребляют активную мощность P=2,7 кВт при линейном токе I=15 A. Определить индуктивность и активное сопротивление катушек, коэффициент мощности, а также полную потребляемую мощность нагрузки.
- 15.В трехфазную четырехпроводную сеть с действующим значением линейного напряжения U=220 В включены лампы накаливания. В каждую фазу включены параллельно по пять ламп мощностью P=60 Вт каждая. Определить линейный ток, токи в фазах, ток в нейтральном проводе, сопротивление каждой фазы, напряжение каждой фазы при обрыве нейтрального провода. Построить векторную диаграмму токов и напряжений.
- 16.В сеть с действующим значением линейного напряжения U=380 В включен трехфазный асинхронный двигатель, обмотки которого соединены по схеме «звезда». Действующее значение линейного тока I=10.5 A, коэффициент мощности соѕф=0.85. Определить ток и напряжение в фазе, потребляемую двигателем полную, активную и реактивную мощности.
- 17. Три резистора, каждый сопротивлением R=125 Ом, соединены по схеме звезда и включены в трехфазную четырехпроводную сеть. Ток каждой фазы I=880 мА. Определить действующие значения фазного и линейного напряжений, линейного тока, полную потребляемую мощность нагрузки, построить векторную диаграмму токов и напряжений.